Photodiode
Definition: A special type of PN junction device that generates current when exposed to light is known as Photodiode. It is also known as photodetector or photosensor. It operates in reverse biased mode and converts light energy into electrical energy.
The figure below shows the symbolic representation of a photodiode:
The PN junction of the device placed inside a glass material. This is done to order to allow the light energy to pass through it. As only the junction is exposed to radiation, thus, the other portion of the glass material is painted black or is metallised.
The overall unit is of very small dimension nearly about 2.5 mm.
It is noteworthy that the current flowing through the device is in micro-ampere and is measured through an ammeter.
Operational Modes of Photodiode,
Photodiode basically operates in two modes:
Photovoltaic mode: It is also known as zero-bias mode because no external reverse potential is provided to the device. However, the flow of minority carrier will take place when the device is exposed to light.
Photoconductive mode: When a certain reverse potential is applied to the device then it behaves as a photoconductive device. Here, an increase in depletion width is seen with the corresponding change in reverse voltage.
Let us now understand the detailed circuit arrangement and working of the photodiode.
Working of Photodiode
In the photodiode, a very small reverse current flows through the device that is termed as dark current. It is called so because this current is totally the result of the flow of minority carriers and is thus flows when the device is not exposed to radiation.
Characteristics of Photodiode,
Here, the vertical line represents the reverse current flowing through the device and the horizontal line represents the reverse-biased potential.
The first curve represents the dark current that generates due to minority carriers in the absence of light.
As we can see in the above figure that all the curve shows almost equal spacing in between them. This is so because current proportionally increases with the luminous flux.
Advantages of Photodiode
- It shows a quick response when exposed to light.
- Photodiode offers high operational speed.
- It provides a linear response.
- It is a low-cost device.
Disadvantages of Photodiode
- It is a temperature-dependent device. And shows poor temperature stability.
- When low illumination is provided, then amplification is necessary.
Applications of Photodiode
- Photodiodes majorly find its use in counters and switching circuits.
- Photodiodes are extensively used in an optical communication system.
- Logic circuits and encoders also make use of photodiode.
- It is widely used in burglar alarm systems. In such alarm systems, until exposure to radiation is not interrupted, the current flows. As the light energy fails to fall on the device, it sounds the alarm.
Comments
Post a Comment